Scheda prodotto

Manufacturer		
Ivialiulactulei		DAIKIN
Outdoor unit		3MXF68A2V1B9
Indoor unit		CTXF25C5V1B
Indoor unit		CTXF25C5V1B
Indoor unit		CTXF25C5V1B
Outdoor sound power level (dB)	dB(A)	61.0
Indoor sound level	dB(A)	55.0
The refrigerant (GWP)	uD(A)	R-32 ()
Cooling mode		R-32 ()
SEER		6.60142671854734
Classe di efficienza energetica		0.00142071654754 A++
Annual electricity consumption	kWh/a	361.0
Design load Pdesignc	kW	6.8
Heating mode: Average climate Design temperature = -10°C		
SCOP		4.049658536585368
Classe di efficienza energetica		A+
Annual electricity consumption	kWh/a	1834.0
Design load Pdesignh at -10°C	kW	5.3
Required back up heating capacity at -10°C	kW	1.35
Declared capacity at -10°C	kW	3.95
Heating mode: Warm climate Design temperature = 2°C		
SCOP		
Classe di efficienza energetica		
Annual electricity consumption	kWh/a	
Design load Pdesignh at 2°C	kW	
Required back up heating capacity at 2°C	kW	
Declared capacity at 2°C	kW	
Heating mode: Cold climate Design temperature = -22°C		
SCOP		
Classe di efficienza energetica		
Annual electricity consumption	kWh/a	
Design load Pdesignh at -22°C	kW	
Required backup heating capacity at -22°C	kW	
Declared capacity at -22°C	kW	

Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 0. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 0 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

^{*2} Consumo di energia in base ai risultati della prova campione. Il consumo reale di energia è funz one della maniera in cui l'apparecchio viene utilizzato e della posizione in cui è collocato.